
BackStage
LISA V - San Diego

Work in Progress

Frank Kardel

Oktober 91 2/92

BackStage

Frank Kardel
kardel@informatik.uni-erlangen.de

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Martensstraße 1 • D-W8520 Erlangen • Germany

Frank Kardel 05/06/1992 1

BackStage

ABSTRACT

Over the years a lot of efforts have been undertaken to solve the

backup and archiving problem. Among all available systems only a

few address the problems involved in dealing with networks of het-

erogenous computers (especially different network implementa-

tions, security, crash resistance). In the Unix1 community there are

some accepted Backup systems (mainly dump/restore) which unfor-

tunately are not available from all vendors. This mostly leads to local

solutions mainly based on the available Unix tools (dump/restore,

cpio, tar, and many more).

The great variety of differences in vendor support and the wish to

have a uniform backup/archive system leads to the conclusion that

a portable, extensible backup/archive system is needed. Experiences

with locally designed backup systems have shown that these re-

quirements can not be fulfilled by using standard Unix tools. A

project for designing a completely new backup/archive system, tai-

lored for the needs of the University of Erlangen, was started.

The main design goals are: portability, independence from network

implementation, extensibility, proper authentication, automated res-

torations that can be started by the users with minimal operator bur-

den and an improved user interface.

The following paper describes the structure of a combined backup/

archive system that is currently being developed.

1. Unix is a Trademark of AT&T Bell Laboratories

Introduction BackStage

2 05/06/1992 Frank Kardel

1. Introduction

BackStage (from: “The Show must go on”)

has been designed to allow easy access to

removable mass storage media like tapes

and optical disks in a networked environ-

ment. Its major goals are the easy handling

of different mass storage media for storing

software packages in different versions

and the efficient handling of incremental

backup.

The decision for implementing a whole

new backup/archive system stems from

the need to handle a constantly increasing

number of file servers within the faculty

and the increasing software installation

base. Since the equipment consists of ma-

chines from different vendors running dif-

ferent versions of Unix and other operating

systems and only a very limited number of

people available for system administra-

tion, we are forced to have a consistent net-

work wide backup/archive system. This

cannot easily be accomplished with the

tools provided by the different Unix ver-

sions. Most available backup and archive

systems lack at least one of the following:

– proper authentication and security

(especially problematic in net-

worked backup/archive systems)

– tape handling

(free, used tapes, tape contents, tape

labels)

– concurrent backups

(writing/retrieving a backup/ar-

chive on multiple devices)

– flexible job scheduling

(user needs a very important resto-

ration done, but the device is being

occupied by a total backup of the

whole network for another 18

hours)

– operator interface

(an easy to comprehend interface

should exist to find out which me-

dia is needed in which device)

– recovery mechanisms for destroyed

databases of the system

(what happens if you lose your tape

directory database)

– user controlled restoration

(usually the operator should not

bother with a restoration request ex-

cept for inserting the media)

– extensibility

(supporting new mass storage de-

vices and improving functionality

should not result in an entire system

redesign)

Many of these features are present in most

of the mainframe software, but up to now

these features are missing from the average

Unix system. Even the backup system

shipped with Unix System V.4 was not de-

signed with networks in mind.

BackStage Overview

Frank Kardel 05/06/1992 3

The decision for building an integrated

backup/archive system is rooted in the

fact that both tasks require many common

actions like media management, device

management and retrieval. In our opinion

these common tasks need not be duplicat-

ed in two different systems.

2. Overview

The BackStage system has been broken up

into three separate modules, each provid-

ing an abstraction for the higher level mod-

ules. All modules rely on a common au-

thenticated communication subsystem

that allows an abstraction from the net-

work implementations used. A major ben-

efit of authenticated network connections

is the ability to check access permissions.

Thus it is possible to allow the users to do

their own archiving and backup restora-

tion. This greatly relieves some of the bur-

den on the operator personnel.

2.1. System Structure

BackStage is layered and consists of three

packages. The lowest layer is the

Volume Manager, which will handle all ac-

tions associated with data storage and re-

trieval on the mass storage media. It also

provides the networking mechanisms

needed to transfer data between the differ-

ent hosts and the storage devices. Net-

working mechanism and device handling

modules are designed for high speed data

transfers by employing multiple buffer

techniques. Another advantage of the

Volume Manager is that it can do all media

maintenance (media replacement, media

copy) without introducing these mecha-

nisms into the other modules.

The second layer, the Archive Manager, al-

lows the storage of different versions of a

set of files. These versions can be stored in

different locations in order to achieve re-

dundancy in case the mass storage media

fails or gets lost. The Archive Manager relies

on the Volume Manager for its services.

The third layer is the Backup Manager,

which uses the Archive Manager for the

backup of all participating nodes in the

network.

Each component has two interfaces. The

first is the programming interface in form

of a library, which allows access to the ser-

vices of each component. The second inter-

face is a set of Unix tools, based on the

programming library, to allow easy inte-

gration of BackStage into the Unix environ-

ment (such as shell scripts).

Backup Manager

Archive Manager

Volume Manager

Overview BackStage

4 05/06/1992 Frank Kardel

2.2. General Mechanisms

Two fundamental mechanisms are used

throughout BackStage. These are transac-

tions and authentication. Transactions pro-

vide a consistent failure model, while

authentication allows for mainly unsuper-

vised secure operation.

2.2.1 Transactions

BackStage uses a transaction based client-

server model. This mechanism is used to

provide consistent failure handling. Since

BackStage is used within a network of com-

puters, any system component, such as the

Volume Manager, the Archive Manager or

the Backup Manager can fail for several rea-

sons. These failures arise from program-

ming errors, network partition, resource

exhaustion or operating system crashes.

Since high reliability and error tracking are

the key issues in any backup/archive sys-

tem we chose the transaction based ap-

proach to provide crash resistent

operation. Any long lasting operation,

such as a write-file transaction on the

Archive Manager, will create a transaction

within the daemon and return a TID

(Transaction IDentification) to the client.

The TID allows the location of a particular

service (transaction) even if a server crash

has occurred in the mean time. TIDs not

only allow the location of a service, but

also limit the number of orphaned transac-

tions by including an expiration time

stamp.

The TID thus has a threefold use:

– naming a transaction

– locating the server for the transac-

tion

– control orphaned transactions by

expiration

2.2.2 Authentication

Authentication is one of the most neglect-

ed issues in Backup/Archive systems cur-

rently used in the Unix community.

Probably the fact, that almost all data has

to be stored on mass media and thus need-

ing a “super-user” is the reason for missing

or inadequate authentication mechanisms.

It is likely, that most Backup/Archive

mechanisms added later rely on the Berke-

ley rcmd authentication when being used

in networked environments (rdump). The

rcmd authentication and the fact, that the

“super-user” is needed to perform Backup,

pose a severe security problem. The “su-

per-user” is still needed for Backup on a

particular host, but this does not mean

granting “super-user” access from other

hosts because of using a centralized Back-

up/Archive system. Proper authentication

allows a Backup/Archive system con-

trolled access to particular hosts. Any host

may choose to write out Backup/Archive

data in encrypted form, which allows hosts

with sensitive data to use a centralized

BackStage Volume Manager

Frank Kardel 05/06/1992 5

Backup/Archive system. This may not

hold for high security applications, but

might provide an extra level of protection,

provided a decent encryption algorithm is

used.

Basically authentication is performed,

whenever a network connection is estab-

lished. At this time a telnet option negoti-

ating type protocol is used to find out

which kinds of authentication procedures

should be done. The server will select one

or more authentication mechanisms of-

fered by the client. After that the authenti-

cation data for each of the selected

mechanisms will be exchanged. Each suc-

cessful exchange leads to an authentication

entry on the server side stating the authen-

ticated entity and the authentication mech-

anism. This data structure can then be used

for authorization purposes such as grant-

ing access to certain transactions or data

via access control lists.

Currently three authentication mecha-

nisms are planned: ANONYMOUS, UNIX,

KERBEROS. Due to the modular design it

should be possible to extend this list,

should more and better authentication

mechanisms arise.

Good authentication mechanisms allow

for an exchange of a session key (kerberos).

This feature can be used to encrypt the

used network communication paths, if

needed.

3. Volume Manager

The Volume Manager is responsible for all

media handling actions. It does all the

bookkeeping pertaining to files and their

respective media. In order to be able to

write data of (almost) arbitrary length onto

almost any media the Volume Manager cre-

ates the abstraction of v-files being stored

on a volume.

 A volume may be one of several media

types, such as disks or tapes, whereby the

physical characteristic of the media must

be consistent within a particular volume.

All free space management and media lo-

cating is done by the Volume Manager.

V-files have an attribute section, which al-

lows storage of additional information

such as access permissions, v-file name,

v-file format and the like.

 There are two types of attributes.

– The mandatory attributes, like v-file

name and ACL (access control list),

have to be provided for a file in or-

der for the Volume Manager to be

able to create and locate the v-file.

– The optional attributes can be used

by applications to store additional

data like the file type or the encryp-

tion method used.

The attribute mechanism allows for easy

extension of the system. Attribute informa-

tion is duplicated on the media and in an

on-line database.

Volume Manager BackStage

6 05/06/1992 Frank Kardel

3.1. Terminology

The Volume Manager defines a certain set of

entities that can be used by the

Archive Manager and the Backup Manager.

These entities represent a stronger abstrac-

tion from the underlying media, thus al-

lowing for consistent extension of device

support without changing higher level ap-

plications.

– Volume

A set of v-files that have the same

physical characteristics (video

tapes, reel tapes, disks, floppy

disks)

It is used to hold a collection of

v-files and is referenced by a vol-

ume name.

– v-file

A v-file is stored in a volume. It may

be of arbitrary length. If the v-file

length exceeds the capacity of the

media used by a volume, it will be

transparently split to occupy multi-

ple media. A v-file may only be

written sequentially. Random ac-

cess to different file portions is not

supported.

It is possible for a v-file to belong to

a v-file-group. This is an optional at-

tribute attached to the file when it is

created in a volume. Only files be-

longing to the same file group may

reside on the same physical media.

This mechanism allows higher level

applications to control the place-

ment of files in order to control the

degree of media redundancy.

3.2. Transactions

The Volume Manager provides several basic

operations on volumes:

– Volume creation and deletion

– Volume attribute management

– V-file writing, reading and deletion

– V-file attribute management

– Transaction handling (list, abort)

– Configuration

3.3. Transaction Scheduling

Since the volume daemon will manage all

reading and writing of v-files using one or

more devices (which may be spread

throughout the network), and since many

different requests may be waiting for me-

dia at the same time, it is necessary to have

a flexible scheduling mechanism for the

pending transactions. Usually the minimi-

zation of media change is the strategy to

choose. But there are situations where it

might be better to process an urgent re-

quest as soon as possible. It is very difficult

to devise an optimal policy for handling re-

quests. It is for this reason that a config-

urable scheduler is being developed. The

scheduler will sort the requests according

to a partial order. Requests falling into dif-

ferent classes will be processed in strict se-

quence, while requests within the same

class compete for resources and may thus

run in parallel provided enough devices

BackStage Archive Manager

Frank Kardel 05/06/1992 7

are present. Since the ordering is config-

urable, it is possible to change the transac-

tion processing order at runtime via a

configuration transaction in order to ac-

commodate exceptional conditions. This

makes manual intervention using the vlink

interface possible.

3.4. Interfaces

The Volume Manager can be accessed via

two applications and the library interface.

One application, the vsh, provides a very

simple interface to the volume operations.

The vsh is intended for use with shell

scripts or for interactive use. The second

application, vlink, is the operator interface

to the Volume Manager. Vlink is used to dis-

play the state of all requests pending with-

in the Volume Manager and also the

required media for these requests. Its main

purpose is to allow for an operator who

manages the insertion and removal of

tapes without having complete insight into

the entire backup and archive system. An-

other use of vlink is the on-line configura-

tion of the Volume Manager.

4. Archive Manager

The Archive Manager is responsible for

managing sets of a-files. These represent

the file trees as seen in most operating sys-

tems.

4.1. Archive File Tree

Basically, a-files represent a generic view of

file system objects. The term file system ob-

ject refers to all entities found in an actual

file system implementation (directories,

files, isam-files, symbolic links, etc.). An

a-file is the name of a file system object,

whose representation may be stored in dif-

ferent versions and incarnations on exter-

nal media. A new version of an a-file is

created whenever the file system object

changes its contents. When the type at-

tribute of the file system object changes or

the file system object is deleted a new in-

carnation is created.

An a-file consists of a name and set of at-

tributes. These attributes describe proper-

ties of the file system object like the access

permissions or the file size. Attributes are

not limited to a particular operating sys-

tem implementation. An Archive Manager

can thus manage archives from different

operating systems. The program that

moves file system objects onto external

storage via the Volume Manager mecha-

nism is called the file-packer. Its task is

very operating system dependent, as it has

to cope with all file system peculiarities

such as special devices, context dependent

files, conditional symbolic links and many

more. It is unlikely that a common file sys-

tem standard will be developed in the near

future. Therefore the Archive Manager uses

the attributed file type view to allow for all

these extensions, while the file-packer will

Archive Manager BackStage

8 05/06/1992 Frank Kardel

cope with specific implementation details.

It is the responsibility of the file-packer to

save enough information in order to re-cre-

ate the file system object.

Only a subset of the possible attributes will

be held in the archive on-line database.

These attributes are used for checking

whether a certain file system object has

changed and can be listed for selection in

the archive retrieval phase.

4.2. Archive Write Transaction

Archives are written as an entire set. This

operation is a single transaction. The set of

file system objects belonging to an archive

is specified as a list of triples consisting of

a-file names, an operation code and a list of

attribute names. There are three operation

codes:

– copy
transfer file system object to media

– copy if changed
transfer file system object only if at

least one of the attributes has

changed

– present
do not copy file system object, but

mark it as present

An unconditional archiving as achieved

with the copy operation code, meaning that

the file system object must be archived. By

using the copy if changed operation code, it

is possible to archive only those file system

objects that have changed in some way.

The notion of changed is derived from the

listed attributes. If the value in the on-line

database of the archive does not match the

value of the attribute found in the actual

file system, a change has occurred. The

present operation code just marks a file sys-

tem object as present. This is necessary in

order to be able to find out about deleted

file system objects. At the end of an archive

write transaction all names of a-files that

have not been listed will be considered de-

leted.

Whenever an archive is written, all data

stored during this transaction will be asso-

ciated with a location. This location corre-

sponds to a v-file. The reason for this

association is motivated by the wish to be

able to support redundant data storage.

(Nothing is worse than to find out that the

needed a-file resides on an unreadable me-

dia.) A file system object can be stored in

different locations which, in conjunction

with the v-file-group mechanism, allows

media failure resistance. Furthermore it is

possible to delete locations. Deleting loca-

tions has the effect of removing redundant

locations and old versions of a-files.

4.3. Version Management

An a-file version consists of two numbers.

The first number is the incarnation. It is in-

cremented each time the file system object

type attribute changes, or when the file

system object is deleted (missing from the

list of a-file names to be written). The sec-

BackStage Archive Manager

Frank Kardel 05/06/1992 9

ond number of the version is the current_-

version this number is incremented each

time, when one of the version-selective

a-file attributes changes.

A fully qualified a-file thus consists of a

path-name, an incarnation number and a

current version.

This version numbering allows for easy

history handling of file system objects.

Example:

The following example shows how a single

file system object history could look like.

Time actually denotes the time the archive

was written.

time event type version

1 new file 1.1

2 changed file 1.2

3 deleted 2.0

4 new dir 2.1

5 dir 2.1

6 changed dir 2.2

8 changed file 3.1

The on-line-database for the archive allows

easy retrieval of attribute information

about the file system objects for all ver-

sions. The possibility of recognizing delet-

ed file system objects is one major

cornerstone for implementing incremental

backup policies. Another advantage is that

the distinction between total and incre-

mental backup diminishes. The archive

presents always the combined view of all

write operations. The user has to select

whether he would like to see the top ver-

sion of the archive or also all deleted ver-

sions.

4.4. Retrieval

Archive retrieval is also a transaction. The

a-files to be retrieved can be located via a

lookup mechanism, that allows to scan

through the archive contents. It is possible

to define an access policy for each archive.

For Unix archive one would most likely

use the Unix access policy. This policy con-

trols access to the a-file tree by looking at

the appropriate file permission attributes.

One main issue about automatic file sys-

tem object restoration is conflict handling.

One of the most common cases is the resto-

ration of a subset of the archive. At this

point a decision has to be made, where this

file tree is to be restored, and what happens

when the restored file tree would over-

write existing file system objects. Several

restoration conflict handling strategies

come into mind:

– common prefix path

– delete common prefix

– rename on conflict

Versions

Locations

Files/Directories

Archive Manager BackStage

10 05/06/1992 Frank Kardel

These strategies and their combinations

constitute a powerful restoration mecha-

nism that can be used by any user who has

access to the appropriate archives. The per-

mission checking policy provides the base

for unsupervised retrieval.

4.5. Terminology

The following abstractions are provided by

the Archive Manager:

– Archive

Set of a-files

– a-file

Member of an archive having differ-

ent versions, each stored in one or

more locations

– Location

logical place, where a version of a

file can be stored (usually a

Volume Manager file)

4.6. Transactions

The Archive Manager provides several basic

operations on archives:

– Archive creation and deletion

– Archive attribute management

– Archive writing, restoring and de-

leting

– Transaction handling (list, abort)

– Archive data retrieval (listing)

– Configuration

4.7. File Packing and Unpacking

Whenever an archive is written a file pack-

er is used. This utility cannot be a normal

unix tool, since it has to support the trans-

action semantics of the Archive Manager.

For this reason it has to generate a detailed

packing protocol that allows the

Archive Manager to update its local data-

base with the new file attributes. The file

packer will be capable of encapsulating all

standard file types. Today’s “archive” pro-

grams lack either proper handling of sys-

tem dependent files such as special files

(tar), or are very implementation specific

(dump).

The file format of the packer is common be-

tween all implementations. It is used to en-

capsulate file system objects. Each

encapsulation has a type attribute allow-

ing to locate the appropriate unpack mech-

anism. This enables the unpacker to skip

unsupported file system objects. Provi-

sions for handling corrupted packer files

are also present. The unpacker will be able

to unpack all file system objects known to

its implementation. It is possible to extend

this set by providing additional unpack

programs that unpack specific file system

objects not previously known to the base

implementation of the unpacker. These ad-

ditional programs handle also file system

object conversion. The base implementa-

tion of the packer/unpacker can be ex-

tended for handling of vendor specific

extensions (conditional symbolic links,

BackStage Backup Manager

Frank Kardel 05/06/1992 11

context dependent files, contiguous files).

These features could also be separate pro-

grams, but the detection mechanism for

non standard file system objects must be

compiled into the file packer.

4.8. Interfaces

The Archive Manager has, as well as the li-

brary interface, the ash application, which

allows the viewing of the archive contents

and the specification of restoration opera-

tions. Due to the inherent authentication

mechanism it is possible to let each user

manage his own archive. The only burden

on the operator would be an occasional re-

quest for inserting some media. Ash and

vlink will also be available as X-clients.

5. Backup Manager

With the mechanisms provided by the

Volume Manager and the Archive Manager it

is relatively easy to build a

Backup Manager. The Backup Manager will

generate the necessary file lists for the

Archive Manager according to the backup

schedules. Overlapping incremental back-

ups are written for data integrity. The

v-file-group mechanism of the

Volume Manager allows the writing of over-

lapping incremental backups onto differ-

ent media. Another important issue of the

Backup Manager is the mapping of the net-

work-wide file tree as created by NFS

mounting to the backup archives. A “back-

up restore ~user” command will invoke

the ash with the appropriate default set-

tings, so that the user can look through the

correct archive, where his/her home direc-

tory is archived. Then it is possible to re-

trieve the needed files by specifying an

archive restoration transaction.

The mapping between network-wide file

trees and backup archives is usually very

complex and will probably demand a fair

amount of configuration data.

6. State of Development
As of July 1991 a prototype implementa-

tion of the Volume Manager and the

Archive Manager was underway. The

Backup Manager was still in the design

phase.

State of Development BackStage

12 05/06/1992 Frank Kardel


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
 o

f 1
8

LISA V - Fall 1991

BackStage
Frank Kardel

kardel@informatik.uni-erlangen.de

IMMD IV • Martensstraße 1 • D-W8520 Erlangen
 Germany

F
R

IE
D

R
IC

H
 -

ALEXANDER - UNIVE
R

S
IT

Ä
T

E
R

LA NGEN - NÜRNBER
G


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 2
 o

f 1
8

Frank Kardel LISA V - San Diego, 1991 2

BackStage Design Goals of BackStage

1. Design Goals of BackStage

– Transaction based client/server model

– Extensibility

– Network protocol/implementation independence

– Flexible authentication/authorization

– User initiated backup/archive

– Support for varying file system semantics

– Portability


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 3
 o

f 1
8

Frank Kardel LISA V - San Diego, 1991 3

BackStage BackStage System Structure

2. BackStage System Structure

Three subsystems:

– Volume Manager
access to mass storage media
media maintenance

– Archive Manager
management of a-file trees (ARCHIVES)

– Backup Manager
incremental/total backup management


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 4
 o

f 1
8

Frank Kardel LISA V - San Diego, 1991 4

BackStage BackStage Base Mechanisms

3. BackStage Base Mechanisms

3.1. Transaction Identification (TID)

– Service identifier (service . network location)

– ⇒ Transaction (“robust process” - crash resistent)

– ⇒ Data structure (configuration)


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 5
 o

f 1
8

Frank Kardel LISA V - San Diego, 1991 5

BackStage BackStage Base Mechanisms

3.2. Authentication / Authorization

– User/Service entity

– Multiple protocols

– Access control lists


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 6
 o

f 1
8

Frank Kardel LISA V - San Diego, 1991 6

BackStage Volume Manager

4. Volume Manager

4.1. Semantics / Abstraction

– Provision of a set of VOLUMES

– VOLUME:
Set of v-files each of (almost) arbitrary length

– VOLUME-Operations:
create, delete volume
create, delete, read, write v-file
list VOLUMES, VOLUME contents

– Scheduling of Operations
Run-time loadable scheduling strategy


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 7
 o

f 1
8

Frank Kardel LISA V - San Diego, 1991 7

BackStage Volume Manager

4.2. Components

– volumed - Volume Manager
scheduling, volume database

– devcon - Device Manager
actual device access

– dlp - Data Link Provider
specialized data transfer agent
Unix - BackStage interface

– vlink - Volume Manager Interface
operator interface - transaction status display and control

– vsh - Volume Manager Shell
Unix command interface to Volume Manager


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 8
 o

f 1
8

Frank Kardel LISA V - San Diego, 1991 8

BackStage Volume Manager

4.3. Interaction Structure

1. create source

2.write v-file

3. transfer file

4. file transport

Client

Volume Manager Device Control

Data Link Provider


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 9
 o

f 1
8

Frank Kardel LISA V - San Diego, 1991 9

BackStage Archive Manager

5. Archive Manager

5.1. Semantics / Abstraction

– Provision of a set of ARCHIVES

– ARCHIVE:
Set of a-file trees
an a-file represents a file system object (like directory,
file, ISAM-file, symb. link, device, ...)

– ARCHIVE-Operations:
create, delete ARCHIVE
write, retrieve to/from ARCHIVE
list ARCHIVES, ARCHIVE contents


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
0

o
f 1

8

Frank Kardel LISA V - San Diego, 1991 10

BackStage Archive Manager

5.2. A-file trees (ARCHIVES)

An a-file consists of:

– Pathname

– Incarnation.Location
incarnation - file incarnation identifier
location - logical storage identifier

– Incarnation identifying attributes
change in one attribute leads to a new incarnation
(file size, owner, mode, type)

– Informational attributes
additional information
(comment, file format, ...)


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
1

o
f 1

8

Frank Kardel LISA V - San Diego, 1991 11

BackStage Archive Manager

5.3. A-file version sequence

An example for “~/xntpd”

Comment Size Type Incarnation.Location

1 initial version 512 dir 1.1

2 removal - - 2.0

3 new again 512 dir 2.1

4 it’s a file now 8567 file 3.1

5 no change - but we write it again 8567 file 3.2

6 now it was moved 17 symlink 4.1

7 no change 17 symlink 4.2


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
2

o
f 1

8

Frank Kardel LISA V - San Diego, 1991 12

BackStage Archive Manager

5.4. ARCHIVE write operation

– ARCHIVES are written by specifying a list of operations
and file names

– operations are:

– copy
copy file unconditionally into archive

– copy if changed
copy on change of incarnation attributes

– present
no copy, but file is marked as present


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
3

o
f 1

8

Frank Kardel LISA V - San Diego, 1991 13

BackStage Archive Manager

5.5. ARCHIVE retrieve operation

– ARCHIVES are retrieved by specifying a list of operations
and file names

– operations define collision handling/retrieval:

– common prefix
on retrieval file name is appended to a prefix path

– delete common prefix
a common prefix of the file name is deleted

– rename
if the retrieved file would overwrite an existing, the re-
trieved file is re-named


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
4

o
f 1

8

Frank Kardel LISA V - San Diego, 1991 14

BackStage Archive Manager

5.6. Components

– ard - Archive Manager
operations, archive database, retrieval control

– packer - File Packer
packing and unpacking of file system objects
(encapsulation)

– ash - Archive Manager Interface
user interface
graphical version available


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
5

o
f 1

8

Frank Kardel LISA V - San Diego, 1991 15

BackStage Archive Manager

5.7. Interaction Structure

file list

write ARCHIVE

Client

Archive Manager Volume Manager

Packer

packer protocol

volume operations


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
6

o
f 1

8

Frank Kardel LISA V - San Diego, 1991 16

BackStage Backup Manager

6. Backup Manager

6.1. Semantics / Abstraction

– Execution of backup sequences for the entire network

– Overlapping incremental backups onto ARCHIVES
throughout the entire network

– File system view transformation


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
7

o
f 1

8

Frank Kardel LISA V - San Diego, 1991 17

BackStage Backup Manager

6.2. Components

– backupd - Backup Manager
backup schedules

– bsh - Backup Manager Interface
schedule/status access, restoration (via ash)


 1

99
2,

 F
ra

nk
 K

a
rd

e
l,

c
re

a
te

d
: 2

7.
 0

9.
 1

99
1

-
16

:3
8:

17
, l

a
st

 m
o

d
ifi

e
d

: 2
8.

 0
9.

 1
99

1
-

15
:4

2:
06

, p
a

g
e

 1
8

o
f 1

8

Frank Kardel LISA V - San Diego, 1991 18

BackStage Backup Manager

6.3. Interaction Structure

file lists

write ARCHIVES

Backup Manager

Archive Managers Volume Managers

Packers

packer protocol

volume operations

